Answer:
80.4 square units (nearest tenth)
Step-by-step explanation:
The given diagram shows a regular dodecagon (12-sided polygon) with an apothem of 5 units.
The apothem of a regular polygon is the distance from the center of the polygon to the midpoint of one of its sides.
We can calculate the side length of a regular polygon given its apothem using the following formula:
[tex]\boxed{\begin{minipage}{5.5cm}\underline{Apothem of a regular polygon}\\\\$a=\dfrac{s}{2 \tan\left(\dfrac{180^{\circ}}{n}\right)}$\\\\where:\\\phantom{ww}$\bullet$ $s$ is the side length.\\ \phantom{ww}$\bullet$ $n$ is the number of sides.\\\end{minipage}}[/tex]
Substitute n = 12 and a = 5 into the equation to create an expression for s:
[tex]5=\dfrac{s}{2 \tan \left(\dfrac{180^{\circ}}{12}\right)}[/tex]
[tex]s=10\tan \left(15^{\circ}\right)[/tex]
Now we can use the standard formula for an area of a regular polygon:
[tex]\boxed{\begin{minipage}{6cm}\underline{Area of a regular polygon}\\\\$A=\dfrac{n\cdot s\cdot a}{2}$\\\\where:\\\phantom{ww}$\bullet$ $n$ is the number of sides.\\ \phantom{ww}$\bullet$ $s$ is the length of one side.\\ \phantom{ww}$\bullet$ $a$ is the apothem.\\\end{minipage}}[/tex]
Substitute the found expression for s, n = 12 and a = 5 into the formula and solve for A:
[tex]A=\dfrac{12 \cdot 10\tan \left(15^{\circ}\right) \cdot 5}{2}[/tex]
[tex]A=\dfrac{600\tan \left(15^{\circ}\right)}{2}[/tex]
[tex]A=300\tan \left(15^{\circ}\right)[/tex]
[tex]A=80.3847577...[/tex]
[tex]A=80.4\; \sf square\;units\;(nearest\;tenth)[/tex]
Therefore, the area of a regular dodecagon with an apothem of 5 units is 80.4 square units, rounded to the nearest tenth.