Respuesta :
(2x^2 + 16x + 30) / (5x^2 + 13x -6)
Start by factoring the numerator and denominator.
Cancel any like factors.
2(x^2 + 8x + 15)
2(x + 5)(x + 3) / (5x -2)(x + 3
2(x + 5) / (5x - 2)
The third choice
Start by factoring the numerator and denominator.
Cancel any like factors.
2(x^2 + 8x + 15)
2(x + 5)(x + 3) / (5x -2)(x + 3
2(x + 5) / (5x - 2)
The third choice
Answer: Third option is correct.
Step-by-step explanation:
Since we have given that
Quantity 2 x squared plus 16 x plus 30 all over quantity 5 x squared plus 13 x minus 6 i.e.
[tex]\frac{2x^2+16x+30}{5x^2+13x-6}[/tex]
We just need to simplify the numerator and denominator :
1) Simplify the numerator by using the Splitting the middle terms:
[tex]2x^2+16x+30\\\\=2x^2+10x+6x+30\\\\=2x(x+5)+6(x+5)\\\\=(2x+6)(x+5)\\\\=2(x+3)(x+5)[/tex]
2) Simplify the denominator by using the Splitting the middle terms:
[tex]5x^2+13x-6\\\\=5x^2+15x-2x-6\\\\=5x(x+3)-2(x+3)\\\\=(5x-2)(x+3)[/tex]
Now, we use the both results in the expression:
[tex]\frac{2(x+3)(x+5)}{(5x-2)(x+3)}\\\\=\frac{2(x+5)}{5x-2}[/tex]
So, 2 open parentheses x plus 5 close parentheses over quantity 5 x minus 2.
Hence, Third option is correct.