Answer:
[tex]m_h=0.2[/tex]
Explanation:
Using the heat formula and concept of calorimetry to answer this problem.
[tex]\boxed{\left\begin{array}{ccc}\text{\underline{Formula for Heat:}}\\\\Q=mc\Delta T\end{array}\right}[/tex]
[tex]\boxed{\left\begin{array}{ccc}\text{\underline{Calorimetry (Energy Conservation):}}\\Q_{gain}+Q_{lose}=0\end{array}\right}[/tex]
Given:
[tex]T_{0_{h}}=100 \textdegree C\\T_{0_{c}}=0 \textdegree C\\T_{f}=40 \textdegree C\\m_c=300 \ g \rightarrow 0.3 \ kg\\c_w=4200 \ \frac{J}{kg\textdegree C}[/tex]
Find:
[tex]m_h= \ ?? \ kg[/tex]
(1) - Identify what is gaining heat and what is losing heat and form an equation
The cold water is gaining heat from the added hot water, which means the hot water is losing heat.
[tex]Q_{gain}=m_cc_w(T_f-T_{0_{c}})\\\\Q_{lose}=m_hc_w(T_f-T_{0_{h}})\\\\\therefore \boxed{m_cc_w(T_f-T_{0_{c}})+m_hc_w(T_f-T_{0_{h}})=0}[/tex]
(2) - Plug the known values into the equation and solve for the unknown "m_h"
[tex]m_cc_w(T_f-T_{0_{c}})+m_hc_w(T_f-T_{0_{h}})=0\\\\\Longrightarrow (0.3)(4200)(40-0)+m_h(4200)(40-100)=0\\\\\Longrightarrow (0.3)(40)-m_h(60)=0\\\\\Longrightarrow m_h(60)=(0.3)(40)\\\\\therefore \boxed{\boxed{m_h=0.2 \ kg}}[/tex]
Thus, the mass of the hot water is found.