Respuesta :
In order to determine which orientation results in a larger depolarization factor for the similar dielectric ellipsoids placed in an electric field, we need to consider the shape and alignment of the ellipsoids with respect to the electric field.
The depolarization factor measures the reduction in the electric polarization of a material due to its shape and alignment in an electric field. It is influenced by the geometry of the material and how it interacts with the electric field.
Qualitatively, if the ellipsoids are aligned in such a way that their major axes are parallel to the electric field lines, the depolarization factor would be smaller. This is because the electric field would act along the long axis of the ellipsoid, resulting in less distortion of the polarized charges inside the material. The polarization would be more effectively aligned with the electric field, minimizing the depolarization effect.
On the other hand, if the ellipsoids are oriented such that their major axes are perpendicular or at an angle to the electric field lines, the depolarization factor would be larger. In this case, the electric field would act in a direction that is not aligned with the major axis of the ellipsoid, causing more distortion and misalignment of the polarized charges inside the material. This results in a larger depolarization effect.
Without a specific diagram or more information about the orientations shown in Figure P5.5, it is difficult to determine the exact orientation with the larger depolarization factor. However, based on the general understanding of the relationship between alignment and the depolarization effect, the orientation where the major axes of the ellipsoids are perpendicular or at an angle to the electric field lines is likely to result in a larger depolarization factor.