2
Which function is the inverse of f(x) = √²-²?
O A.
B.
O c.
O D.
f¹(x) = 36x² + 2, for x ≥ 0
f¹(x) = 6x² + 2, for x ≥ 0
f¹(x) = 36x + 2, for x ≥ 0
f¹(x) = 6x² - 2, for x ≥ 0

2 Which function is the inverse of fx O A B O c O D fx 36x 2 for x 0 fx 6x 2 for x 0 fx 36x 2 for x 0 fx 6x 2 for x 0 class=

Respuesta :

Answer:

[tex]\huge\boxed{\sf f^{-1}(x)=36x^2+2}[/tex]

Step-by-step explanation:

Given function:

[tex]\displaystyle f(x)=\frac{\sqrt{x-2} }{6}[/tex]

Put f(x) = y.

[tex]\displaystyle y=\frac{\sqrt{x-2} }{6}[/tex]

Exchange x and y.

[tex]\displaystyle x=\frac{\sqrt{y-2} }{6}[/tex]

Solve for y.

[tex]\displaystyle x=\frac{\sqrt{y-2} }{6}[/tex]

Multiply both sides by 6.

[tex]\displaystyle x \times 6 = \sqrt{y-2} \\\\6x = \sqrt{y-2}[/tex]

Take square root on both sides.

[tex](6x)^2=(\sqrt{y-2} )^2\\\\36x^2 = y - 2[/tex]

Add 2 to both sides

[tex]36x^2+2 = y[/tex]

Put y = f⁻¹(x)

[tex]36x^2+2=f^{-1}(x)[/tex]

OR

[tex]f^{-1}(x)=36x^2+2\\\\\rule[225]{225}{2}[/tex]

ACCESS MORE