The form of the quadratic function that would be most efficient for finding the maximum value is vertex form:
f(x) = a(x - h)^2 + k
In this form, the vertex of the parabola is at the point (h, k), and the value of a determines the shape of the parabola. Specifically, if a is positive, the parabola opens upward, and the vertex is a minimum point. If a is negative, the parabola opens downward, and the vertex is a maximum point. Therefore, by looking at the value of a and the coordinates of the vertex, we can determine the maximum value of the function f(x).