An electron moves north at a velocity of 9.9 x 10^4 m/s and has a magnetic force of 5.9 x 10^-18 N west exerted on it. If the magnetic field points upward, what is the magnitude of the magnetic field?

Respuesta :

Answer:

Approximately [tex]3.7 \times 10^{-4}\; {\rm T}[/tex].

Explanation:

When an electric point charge moves through a magnetic field, magnitude of the magnetic force on the charge would be:

[tex]F = q\, v\, B\, \cos(\theta)[/tex], where:

  • [tex]q[/tex] is the magnitude of the charge;
  • [tex]v[/tex] is the magnitude of velocity of the charge relative to the magnetic field;
  • [tex]B[/tex] is the magnitude of the magnetic field;
  • [tex]\theta[/tex] is the angle between velocity [tex]v[/tex] and magnetic field [tex]B[/tex].

In this question, it is given that [tex]F = 5.9 \times 10^{-18}\; {\rm N}[/tex] and [tex]v = 9.9 \times 10^{4}\; {\rm m\cdot s^{-1}}[/tex]. The magnitude of the charge on an electron is [tex]q = 1.602 \times 10^{-19}\; {\rm C}[/tex] (also known as the elementary charge.)

Since the velocity of the electron (north) is perpendicular to the magnetic field (upwards,) the angle between the two would be [tex]\theta = 90^{\circ}[/tex].

Rearrange the equation [tex]F = q\, v\, B\, \cos(\theta)[/tex] to find the magnitude of the magnetic field [tex]B[/tex]:

[tex]\begin{aligned}B &= \frac{F}{q\, v\, \cos(\theta)} \\ &= \frac{5.9 \times 10^{-18}}{(1.602 \times 10^{-19})\, (9.9 \times 10^{4})\, \cos(90^{\circ})} \\ &\approx 3.72 \times 10^{-4}\; {\rm T}\end{aligned}[/tex].

(All values are measured in standard units.)

ACCESS MORE