Respuesta :

Answer:

[tex]380 \text{ m}^2[/tex]

Step-by-step explanation:

To find the surface area of the trapezoidal pyramid, we can use the formula:

[tex]SA = 2(b) + (p \cdot d)[/tex],

where [tex]b[/tex] is the area of the base, [tex]p[/tex] is the perimeter of the base, and [tex]d[/tex] is the prism's depth.

First, we should find the area of the base using the area of a trapezoid formula.

[tex]A_\text{trap} = \dfrac{b_1 + b_2}{2} \cdot h[/tex]

[tex]b = \dfrac{15 + 5}{2} \cdot 7[/tex]

[tex]b = 10 \cdot 7[/tex]

[tex]b = 70 \text{ m}^2[/tex]

Now, we can plug the given dimensions along with the base area into the surface area formula.

[tex]SA = 2(b) + (p \cdot d)[/tex]

[tex]SA = 2(70) + ([15 + 10 + 5 + 10] \cdot 6)[/tex]

[tex]SA = 140 + (40 \cdot 6)[/tex]

[tex]SA = 140 + 240[/tex]

[tex]\boxed{SA = 380 \text{ m}^2}[/tex]

The answer would be 380m2
ACCESS MORE