contestada

Convert the polar equation to rectangular form. and Convert the rectangular equation to polar form

please show or explain the steps of work so I can learn to do this myself

Convert the polar equation to rectangular form and Convert the rectangular equation to polar form please show or explain the steps of work so I can learn to do class=

Respuesta :

Answer:

4) [tex](x-1)^2 + (y - 1)^2 = 2[/tex]

Step-by-step explanation:

4) We can convert this polar equation to rectangular form using the following formulas:

  • [tex]r^2 = x^2 + y^2[/tex]
  • [tex]r \sin(\theta) = y[/tex]
  • [tex]r\cos(\theta) = x[/tex]
  • [tex]\tan(\theta) = \dfrac{y}{x}[/tex]

We need to manipulate the equation so some of the terms match these formulas.

[tex]r=2\cos(\theta) + 2\sin(\theta)[/tex]

↓ dividing both sides by [tex]2[/tex]

[tex]r / 2=\cos(\theta) + \sin(\theta)[/tex]

↓ multiplying both sides by [tex]r[/tex]

[tex]\dfrac{r^2}{2}=r\cos(\theta) + r\sin(\theta)[/tex]

Now, we can apply the polar conversion formulas to get the equation:

[tex]\dfrac{x^2 + y^2}{2}=x + y[/tex]

This can be manipulated to get a circle standard form equation.

↓ multiplying both sides by 2

[tex]x^2 + y^2=2x + 2y[/tex]

↓ completing the square for [tex]x[/tex]

    ↓ moving the x's to one side

    [tex]x^2 -2x=-y^2 + 2y[/tex]

    ↓ adding (-2/2)², or 1, to both sides

    [tex]x^2 -2x + 1=-y^2 + 2y + 1[/tex]

    ↓ factoring the perfect square

    [tex](x-1)^2=-y^2 + 2y + 1[/tex]

↓ completing the square for [tex]y[/tex]

    ↓ factoring a (-1) out of the right side

    [tex](x-1)^2=-1(y^2 - 2y - 1)[/tex]

    ↓ adding (-1)(+2) to both sides

    [tex](x-1)^2 - 2=-1(y^2 - 2y - 1 + 2)[/tex]

    ↓ simplifying

    [tex](x-1)^2 - 2=-1(y^2 - 2y + 1)[/tex]

    ↓ factoring the perfect square

    [tex](x-1)^2 - 2=-(y - 1)^2[/tex]

↓ adding [tex](y-1)^2[/tex] to both sides

[tex](x-1)^2 + (y - 1)^2 - 2 = 0[/tex]

↓ adding 2 to both sides

[tex]\boxed{(x-1)^2 + (y - 1)^2 = 2}[/tex]

ACCESS MORE