Answer:
(1) - C, [tex](3,\frac{\pi}{6})[/tex]
(2) - B, [tex](0,-2)[/tex]
Step-by-step explanation:
[tex]\text{Using the following conversions:}\\\boxed{\left\begin{array}{ccc}\text{\underline{Rect. to Polar:}}\\(x,y)\rightarrow(r, \theta)\\\\r=\sqrt{x^2+y^2}\\\\\theta=\tan^{-1}(\frac{y}{x})\end{array}\right} \ \ \boxed{\left\begin{array}{ccc}\text{\underline{Polar to Rect.:}}\\(r, \theta)\rightarrow(x,y)\\\\x=r\cos \theta\\\\y=r \sin\theta\end{array}\right}[/tex]
Note that when doing these calculations, make sure your calculator is in radians mode.
Question #2:
Given:
[tex](\frac{3\sqrt{3} }{2} ,\frac{3}{2} ) \ \text{in} \ (x,y)[/tex]
[tex](\frac{3\sqrt{3} }{2} ,\frac{3}{2} )\\\\\Rightarrow r=\sqrt{(\frac{2\sqrt{2} }{2})^2+(\frac{3}{2})^2} \\\\\Longrightarrow r=\sqrt{\frac{27}{4} +\frac{9}{4} } \\\\\Longrightarrow r=\sqrt{9}\\\\\therefore \boxed{ r=3}\\\\\Rightarrow \theta=\tan^{-1}(\frac{\frac{3}{2}}{\frac{3\sqrt{3} }{2}})\\\\\Longrightarrow \theta=\tan^{-1}(\frac{\sqrt{3} }{3})\\\therefore \boxed{\theta=\frac{\pi}{6} }[/tex]
Thus, the correct option is C.
[tex]\boxed{\boxed{(3,\frac{\pi}{6})}}[/tex]
Question #3:
Given:
[tex](2,\frac{3\pi}{2} ) \ \text{in} \ (r,\theta)[/tex]
[tex](2,\frac{3\pi}{2} ) \\\\\Rightarrow x=(2)\cos(\frac{3\pi}{2})\\\\\Longrightarrow x=(2)(0)\\\\\therefore \boxed{x=0}\\\\\Rightarrow y=(2)\sin(\frac{3\pi}{2})\\\\Longrightarrow y=(2)(-1)\\\\\therefore \boxed{y=-2}[/tex]
Thus, the correct option is B.
[tex]\boxed{\boxed{(0,-2)}}[/tex]