Respuesta :

[tex]\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{cccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}\\\\ -----------------------------\\\\ thus \\\\\\ \cfrac{75}{12}=\cfrac{s^2}{s^2}\implies \cfrac{75}{12}=\left( \cfrac{s}{s} \right)^2\implies \sqrt{\cfrac{75}{12}}=\cfrac{s}{s} \\\\\\ [/tex]

[tex]\bf \cfrac{\sqrt{75}}{\sqrt{12}}=\cfrac{s}{s}\impliedby \begin{array}{llll} \textit{ratio of the sides}\\ \textit{and thus of the perimeter} \end{array}[/tex]
ACCESS MORE