Find the 10th term of the following geometric sequence: 2, 8, 32, 128.        A. 164,357   B. 621,325   C. 524,288   D. 248,221  

Respuesta :

common ratio = 8/2 = 32/8 = 4

10th term  = a1*r^(n - 1)   where a1 = 2 , r = 4 and n = 10
                = 2 * 4^9
                =  524,288

Answer:

[tex]524,288[/tex]

Step-by-step explanation:

Find the 10th term of the following geometric sequence

2, 8, 32, 128.......

To find the nth term of any geometric sequence we use formula

[tex]a_n=a(r)^{n-1}[/tex]

Where 'a' is the first term and 'r' is the common ratio

To find common ratio we divide the second term by first term

[tex]\frac{8}{2} =4[/tex]

[tex]\frac{32}{8} =4[/tex]

[tex]\frac{128}{32} =4[/tex]

[tex]r=4[/tex] and [tex]a=2[/tex]

Plug in the values in the formula, n=10

[tex]a_n=a(r)^{n-1}[/tex]

[tex]a_{10}=2(4)^{10-1}[/tex]

[tex]a_{10}=2(4)^{9}[/tex]

[tex]a_{10}= 524,288[/tex]

ACCESS MORE