Respuesta :
If you're using the app, try seeing this answer through your browser: https://brainly.com/question/3184618
——————————
[tex]\mathsf{c}\cdot \overrightarrow{\mathsf{u}}=\mathsf{-\,3\cdot (5,\,-12)}[/tex]
Therefore,
[tex]\left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{\left\|-\,3\cdot (5,\,-12)\right\|}\\\\ \left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{\left|-\,3\right|\cdot \left\|(5,\,-12)\right\|}\\\\ \left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{3\cdot \sqrt{5^2+(-12)^2}}[/tex]
[tex]\left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{3\cdot \sqrt{25+144}}\\\\ \left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{3\cdot \sqrt{169}}\\\\ \left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{3\cdot \sqrt{13^2}}\\\\ \left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{3\cdot 13}[/tex]
[tex]\left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{39}\quad\longleftarrow\quad\textsf{this is the answer (option C. 39)}[/tex]
I hope this helps. =)
——————————
[tex]\mathsf{c}\cdot \overrightarrow{\mathsf{u}}=\mathsf{-\,3\cdot (5,\,-12)}[/tex]
Therefore,
[tex]\left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{\left\|-\,3\cdot (5,\,-12)\right\|}\\\\ \left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{\left|-\,3\right|\cdot \left\|(5,\,-12)\right\|}\\\\ \left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{3\cdot \sqrt{5^2+(-12)^2}}[/tex]
[tex]\left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{3\cdot \sqrt{25+144}}\\\\ \left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{3\cdot \sqrt{169}}\\\\ \left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{3\cdot \sqrt{13^2}}\\\\ \left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{3\cdot 13}[/tex]
[tex]\left\|\mathsf{c}\cdot \overrightarrow{\mathsf{u}}\right\|=\mathsf{39}\quad\longleftarrow\quad\textsf{this is the answer (option C. 39)}[/tex]
I hope this helps. =)
The value of [tex]||c.\overrightarrow {u}||[/tex] is 39 and this can be determined by using the property of dot product and formula to find the vector magnitude.
Given :
- u = (5,-12)
- c = -3
To determine the value of [tex]||c.\overrightarrow {u}||[/tex], calculations is as follows:
[tex]||c.\overrightarrow {u}||[/tex] = [tex]||-3.(5,-12)||[/tex]
[tex]||c.\overrightarrow{u}|| = |-3|.||(5,-12)||[/tex]
[tex]||c.\overrightarrow{u}|| = |-3|.\sqrt{(5)^2+(-12)^2}[/tex]
[tex]||c.\overrightarrow{u}|| = 3.\sqrt{25+144}[/tex]
[tex]||c.\overrightarrow{u}|| = 3.\sqrt{169} = 3\times 13[/tex]
[tex]||c.\overrightarrow{u}|| = 39[/tex]
Therefore, the correct option is C).
For more information, refer to the link given below:
https://brainly.com/question/9523059