Respuesta :

A. 30,60,90 Can't see p

Answer:

The measures of the triangle are [tex]30\°,60\°,90\°[/tex]

Step-by-step explanation:

see the attached figure with letters to better understand the problem  

Step 1

Verify if the triangle ABC is a right triangle

Applying the Pythagoras Theorem

[tex](14\sqrt{3})^{2} =21^{2}+(7\sqrt{3})^{2}\\ \\588=441+147\\ \\588=588[/tex]

Is a right triangle

therefore

the measure of angle A is [tex]90\°[/tex]

Step 2

In the right triangle ABC

[tex]cos(C)=\frac{21}{14\sqrt{3}}[/tex]

[tex]C=arcos(\frac{21}{14\sqrt{3}})=30\°[/tex]

Step 3

Find the measure of angle B

we know that

the sum of the internal angles of a triangle is equal to [tex]180\°[/tex]

so

[tex]A+B+C=180\°[/tex]

substitute the values and solve for B

[tex]90\°+B+30\°=180\°[/tex]

[tex]B+120\°=180\°[/tex]

[tex]B=60\°[/tex]

The measures of the triangle are [tex]30\°,60\°,90\°[/tex]

                       

Ver imagen calculista
ACCESS MORE