Respuesta :
tanx=12 is the same as saying that tanx=12/1. We know that tanx is opposite over adjacent. If you draw out a triangle with x in an angle and 12 on the opposite length and 1 on the adjacent, pythagorean theorem can be used to find the hypotenuse, since sinx is opposite over hypotenuse. The hypotenuse is the square root of 145, and therefore sinx is 12/√145
Answer : The value of [tex]\sin \theta[/tex] is, [tex]\frac{1}{\sqrt{5}}[/tex]
Step-by-step explanation :
Given:
[tex]\tan \theta=\frac{1}{2}[/tex]
According to trigonometric function,
[tex]\tan \theta=\frac{Perpendicular}{Base}=\frac{1}{2}[/tex]
To make a ΔABC:
Thus,
Side AB = 1x
Side BC = 2x
Now we have to determine the side AC.
Using Pythagoras theorem in ΔABC :
[tex](Hypotenuse)^2=(Perpendicular)^2+(Base)^2[/tex]
[tex](AC)^2=(AB)^2+(BC)^2[/tex]
Now put all the values in the above expression, we get the value of side AC.
[tex](AC)^2=(1x)^2+(2x)^2[/tex]
[tex]AC=\sqrt{(1x)^2+(2x)^2}[/tex]
[tex]AC=\sqrt{5}x[/tex]
Now we have to determine the value of [tex]\sin \theta[/tex]
According to trigonometric function,
[tex]\sin \theta=\frac{Perpendicular}{Hypotenuse}=\frac{1x}{\sqrt{5}x}[/tex]
[tex]\sin \theta=\frac{1}{\sqrt{5}}[/tex]
Thus, the value of [tex]\sin \theta[/tex] is, [tex]\frac{1}{\sqrt{5}}[/tex]
![Ver imagen Alleei](https://us-static.z-dn.net/files/d5c/2925fca68c459cb9d9cb1f7af177abb3.png)