Respuesta :

tanx=12 is the same as saying that tanx=12/1. We know that tanx is opposite over adjacent. If you draw out a triangle with x in an angle and 12 on the opposite length and 1 on the adjacent, pythagorean theorem can be used to find the hypotenuse, since sinx is opposite over hypotenuse. The hypotenuse is the square root of 145, and therefore sinx is 12/√145

Answer : The value of [tex]\sin \theta[/tex] is, [tex]\frac{1}{\sqrt{5}}[/tex]

Step-by-step explanation :

Given:

[tex]\tan \theta=\frac{1}{2}[/tex]

According to trigonometric function,

[tex]\tan \theta=\frac{Perpendicular}{Base}=\frac{1}{2}[/tex]

To make a ΔABC:

Thus,

Side AB = 1x

Side BC = 2x

Now we have to determine the side AC.

Using Pythagoras theorem in ΔABC :

[tex](Hypotenuse)^2=(Perpendicular)^2+(Base)^2[/tex]

[tex](AC)^2=(AB)^2+(BC)^2[/tex]

Now put all the values in the above expression, we get the value of side AC.

[tex](AC)^2=(1x)^2+(2x)^2[/tex]

[tex]AC=\sqrt{(1x)^2+(2x)^2}[/tex]

[tex]AC=\sqrt{5}x[/tex]

Now we have to determine the value of [tex]\sin \theta[/tex]

According to trigonometric function,

[tex]\sin \theta=\frac{Perpendicular}{Hypotenuse}=\frac{1x}{\sqrt{5}x}[/tex]

[tex]\sin \theta=\frac{1}{\sqrt{5}}[/tex]

Thus, the value of [tex]\sin \theta[/tex] is, [tex]\frac{1}{\sqrt{5}}[/tex]

Ver imagen Alleei
ACCESS MORE