A uniform distribution has a constant density over its support:
[tex]f(x)=\begin{cases}c&\text{for }a\le x\le b\\0&\text{otherwise}\end{cases}[/tex]
Any probability distribution sums to 1 over its support, so in this case [tex]f(x)[/tex] satisfies
[tex]\displaystyle\int_{-\infty}^\infty f(x)\,\mathrm dx=1[/tex]
Replace [tex]f(x)[/tex] with its definition as given above, so you have
[tex]1=\displaystyle\int_a^bc\,\mathrm dx=cx\bigg|_{x=a}^{x=b}=c(b-a)[/tex]
[tex]\implies c=\dfrac1{b-a}[/tex]
So the density function is
[tex]f(x)=\begin{cases}\dfrac1{b-a}&\text{for }a\le x\le b\\\\0&\text{otherwise}\end{cases}[/tex]