Respuesta :
Answer:
C. ([tex]\frac{13}{22},\frac{1}{22})[/tex]
Step-by-step explanation:
We are given that a system of equations
[tex]7x-3y=4[/tex]
[tex]2x-4y=1[/tex]
We have to find the solution of the system of equation .
Using elimination method,
Multiply first equation by 2 and equation second multiply by 7
Then, we get
[tex]14x-6y=8[/tex]
[tex]14x-28y=7[/tex]
Now, subtract equation second from first equation
[tex]22y=1[/tex]
[tex]y=\frac{1}{22}[/tex]
Subtract the value of y in equation first
Then, we get
[tex]7x-3\times \frac{1}{22}=4[/tex]
[tex]7x-\frac{3}{22}=4[/tex]
[tex]7x=4+\frac{3}{22}=\frac{91}{22}[/tex]
[tex]x=\frac{91}{22}\times \frac{1}{7}=\frac{13}{22}[/tex]
Hence, the solution of given system is ([tex]\frac{13}{22},\frac{1}{22})[/tex]