Respuesta :

the correct answer is c.

Answer:

C. ([tex]\frac{13}{22},\frac{1}{22})[/tex]

Step-by-step explanation:

We are given that a system of equations

[tex]7x-3y=4[/tex]

[tex]2x-4y=1[/tex]

We have to find the solution of the system of equation .

Using elimination method,

Multiply first equation by 2 and equation second multiply by 7

Then, we get

[tex]14x-6y=8[/tex]

[tex]14x-28y=7[/tex]

Now, subtract equation second from first equation

[tex]22y=1[/tex]

[tex]y=\frac{1}{22}[/tex]

Subtract the value of y in equation first

Then, we get

[tex]7x-3\times \frac{1}{22}=4[/tex]

[tex]7x-\frac{3}{22}=4[/tex]

[tex]7x=4+\frac{3}{22}=\frac{91}{22}[/tex]

[tex]x=\frac{91}{22}\times \frac{1}{7}=\frac{13}{22}[/tex]

Hence, the solution of given system is ([tex]\frac{13}{22},\frac{1}{22})[/tex]

ACCESS MORE