Answer:
[tex]AB=\sqrt{53}[/tex]
[tex]BC=\sqrt{265}[/tex]
[tex]CD=\sqrt{265}[/tex]
[tex]DA=\sqrt{53}[/tex]
ABCD is a kite.
Step-by-step explanation:
Given vertices of quadrilateral ABCD:
To find the exact lengths of the sides of the quadrilateral, use the distance formula.
[tex]\boxed{\begin{minipage}{7.4 cm}\underline{Distance between two points}\\\\$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$\\\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ are the two points.\\\end{minipage}}[/tex]
[tex]\begin{aligned}AB&=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}\\&=\sqrt{(-3-4)^2+(3-5)^2}\\&=\sqrt{(-7)^2+(-2)^2}\\&=\sqrt{49+4}\\&=\sqrt{53}\\\end{aligned}[/tex]
[tex]\begin{aligned}BC&=\sqrt{(x_C-x_B)^2+(y_C-y_B)^2}\\&=\sqrt{(-6-(-3))^2+(-13-3)^2}\\&=\sqrt{(-3)^2+(-16)^2}\\&=\sqrt{9+256}\\&=\sqrt{265}\\\end{aligned}[/tex]
[tex]\begin{aligned}CD&=\sqrt{(x_D-x_C)^2+(y_D-y_C)^2}\\&=\sqrt{(6-(-6))^2+(-2-(-13))^2}\\&=\sqrt{(12)^2+(11)^2}\\&=\sqrt{144+121}\\&=\sqrt{265}\\\end{aligned}[/tex]
[tex]\begin{aligned}DA&=\sqrt{(x_A-x_D)^2+(y_A-y_D)^2}\\&=\sqrt{(4-6)^2+(5-(-2))^2}\\&=\sqrt{(-2)^2+(7)^2}\\&=\sqrt{4+49}\\&=\sqrt{53}\\\end{aligned}[/tex]
A kite has two pairs of adjacent equal sides.
Therefore, quadrilateral ABCD is a kite as: