Answer:
C) x = -1, y = 2
Step-by-step explanation:
Given system of linear equations:
[tex]\begin{cases}2x + 5y = 8\\4x + 3y = 2\end{cases}[/tex]
Multiply the first equation by -2:
[tex]\implies -2 \cdot 2x -2 \cdot 5y=-2 \cdot 8[/tex]
[tex]\implies -4x-10y=-16[/tex]
Add this to the second equation to eliminate x:
[tex]\begin{array}{crcrcr}& 4x & + & 3y & = & 2\\+&(-4x & - &10y&=&-16\\\cline{2-6}&&-&7y&=&-14\end{array}[/tex]
Solve for y:
[tex]\implies -7y=-14[/tex]
[tex]\implies \dfrac{-7y}{-7}=\dfrac{-14}{-7}[/tex]
[tex]\implies y=2[/tex]
Substitute the found value of y into one of the equations and solve for x:
[tex]\implies 2x+5(2)=8[/tex]
[tex]\implies 2x+10=8[/tex]
[tex]\implies 2x=-2[/tex]
[tex]\implies x=-1[/tex]
Therefore the solution to the given system of linear equations is: