Respuesta :

Answer:

C)  x = -1, y = 2

Step-by-step explanation:

Given system of linear equations:

[tex]\begin{cases}2x + 5y = 8\\4x + 3y = 2\end{cases}[/tex]

Multiply the first equation by -2:

[tex]\implies -2 \cdot 2x -2 \cdot 5y=-2 \cdot 8[/tex]

[tex]\implies -4x-10y=-16[/tex]

Add this to the second equation to eliminate x:

[tex]\begin{array}{crcrcr}& 4x & + & 3y & = & 2\\+&(-4x & - &10y&=&-16\\\cline{2-6}&&-&7y&=&-14\end{array}[/tex]

Solve for y:

[tex]\implies -7y=-14[/tex]

[tex]\implies \dfrac{-7y}{-7}=\dfrac{-14}{-7}[/tex]

[tex]\implies y=2[/tex]

Substitute the found value of y into one of the equations and solve for x:

[tex]\implies 2x+5(2)=8[/tex]

[tex]\implies 2x+10=8[/tex]

[tex]\implies 2x=-2[/tex]

[tex]\implies x=-1[/tex]

Therefore the solution to the given system of linear equations is:

  • x = -1, y = 2
ACCESS MORE