Respuesta :
Given function:
- g(x) = - (x - 4)³
This is a transformation of the
- a) parent cubic function f(x) = x³
b)
It was first reflected in the x-axis:
- f (x) → h(x) ⇒ x³ → - x³
Then translated right by 4 units:
- h(x) → g(x) ⇒ - x³ → - (x - 4)³
So the applicable choices are:
- 2. reflection in the x-axis,
- 4. horizontal shift of 4 units right.
c)
See the attached with all transformations f(x) → h(x) → g(x).

Answer:
[tex]\textsf{a)} \quad f(x)=x^3[/tex]
b) 4. horizontal shift of 4 units right
2. reflection in the x-axis
c) See attachment.
Step-by-step explanation:
Part (a)
Given function:
[tex]g(x)=-(x-4)^3[/tex]
The parent function is:
[tex]f(x)=x^3[/tex]
Part (b)
To transform the parent function f(x) to g(x):
1. Horizontal shift of 4 units right:
[tex]\implies f(x-4) = (x-4)^3[/tex]
2. Reflection in the x-axis:
[tex]\implies -f(x-4) = -(x-4)^3[/tex]
Part (c)
To sketch the graph of g(x):
- Sketch the graph of y = x³
- Translate it 4 units to the right.
- Reflect it in the x-axis.

