We're asked to find inverse of the function,
[tex]\longrightarrow\rm{f(x)=\dfrac{e^x-e^{-x}}{e^x+e^{-x}}+2}[/tex]
Take [tex]\rm{y=f(x).}[/tex]
[tex]\longrightarrow\rm{y=\dfrac{e^x-e^{-x}}{e^x+e^{-x}}+2}[/tex]
Subtract 2.
[tex]\longrightarrow\rm{y-2=\dfrac{e^x-e^{-x}}{e^x+e^{-x}}}[/tex]
We apply componendo - dividendo rule.
[tex]\rm{\dfrac{a}{b}=\dfrac{c}{d}\quad\iff\quad\dfrac{b+a}{b-a}=\dfrac{d+c}{d-c}}[/tex]
Thus,
[tex]\longrightarrow\rm{\dfrac{y-2}{1}=\dfrac{e^x-e^{-x}}{e^x+e^{-x}}}[/tex]
[tex]\Longrightarrow\rm{\dfrac{1+(y-2)}{1-(y-2)}=\dfrac{(e^x+e^{-x})+(e^x-e^{-x})}{(e^x+e^{-x})-(e^x-e^{-x})}}[/tex]
[tex]\longrightarrow\rm{\dfrac{y-1}{3-y}=\dfrac{2e^x}{2e^{-x}}}[/tex]
[tex]\longrightarrow\rm{\dfrac{e^x}{e^{-x}}=\dfrac{y-1}{3-y}}[/tex]
[tex]\longrightarrow\rm{e^{2x}=\dfrac{y-1}{3-y}}[/tex]
[tex]\longrightarrow\rm{(e^x)^2=\dfrac{y-1}{3-y}}[/tex]
Take square root.
[tex]\longrightarrow\rm{e^x=\sqrt{\dfrac{y-1}{3-y}}}[/tex]
Take natural logarithm.
[tex]\longrightarrow\rm{x=\log_e\sqrt{\dfrac{y-1}{3-y}}}[/tex]
[tex]\longrightarrow\rm{x=\dfrac{1}{2}\log_e\left(\dfrac{y-1}{3-y}\right)}[/tex]
Now take [tex]\rm{x=f^{-1}(y).}[/tex]
[tex]\longrightarrow\rm{f^{-1}(y)=\dfrac{1}{2}\log_e\left(\dfrac{y-1}{3-y}\right)}[/tex]
Replace y by x and finally we get,
[tex]\longrightarrow\rm{\underline{\underline{f^{-1}(x)=\dfrac{1}{2}\log_e\left(\dfrac{x-1}{3-x}\right)}}}[/tex]
This is the inverse of the given function.