Respuesta :

We're given the equation,

[tex]\longrightarrow\sin\theta+\csc\theta+2=0[/tex]

Take [tex]\sin\theta=x,[/tex] then [tex]\csc\theta=\frac{1}{x}.[/tex] Then the equation becomes,

[tex]\longrightarrow x+\dfrac{1}{x}+2=0[/tex]

Multiply both sides by [tex]x,[/tex] assuming [tex]x\neq 0.[/tex] Then we get,

[tex]\longrightarrow x^2+2x+1=0[/tex]

[tex]\longrightarrow (x+1)^2=0[/tex]

[tex]\Longrightarrow x=-1[/tex]

We're asked to find the value of,

[tex]\longrightarrow y=\sin^{2019}\theta+\csc^{2020}\theta[/tex]

As we've taken [tex]\sin\theta=x,[/tex] this expression becomes,

[tex]\longrightarrow y=x^{2019}+\dfrac{1}{x^{2020}}[/tex]

Now putting [tex]x=-1,[/tex]

[tex]\longrightarrow y=(-1)^{2019}+\dfrac{1}{(-1)^{2020}}[/tex]

[tex]\longrightarrow y=-1+\dfrac{1}{1}[/tex]

[tex]\longrightarrow y=-1+1[/tex]

[tex]\longrightarrow\underline{\underline{y=0}}[/tex]

Hence 0 is the answer.

RELAXING NOICE
Relax