Respuesta :
Step-by-step explanation:
We're asked to find the simplified form of,
[tex]\longrightarrow S=\underbrace{1^2+3^2+5^2+7^2+\,\dots}_{\textrm{$n$ terms}}[/tex]
The n'th term of the sequence [tex]1^2,\ 3^2,\ 5^2,\ 7^2,\,\dots[/tex] is [tex](2n-1)^2.[/tex] So,
[tex]\longrightarrow S=1^2+3^2+5^2+\,\dots\,+(2n-1)^2[/tex]
We know the following sum,
[tex]\longrightarrow 1^2+2^2+3^2+\,\dots\,+n^2=\dfrac{n(n+1)(2n+1)}{6}[/tex]
This is expression for the sum of squares of first 'n' natural numbers. In case of '2n' natural numbers,
[tex]\longrightarrow 1^2+2^2+3^2+\,\dots\,+(2n)^2=\dfrac{2n(2n+1)(4n+1)}{6}[/tex]
We separate odd squares and even squares in the LHS.
[tex]\begin{aligned}\longrightarrow\ \ &\Big(1^2+3^2+5^2+\,\dots\,+(2n-1)^2\Big)&\\+\ \ &\Big(2^2+4^2+6^2+\,\dots\,+(2n)^2\Big)&=\dfrac{2n(2n+1)(4n+1)}{6}\end{aligned}[/tex]
We can take 4 common from the sum of even squares.
[tex]\begin{aligned}\longrightarrow\ \ &\Big(1^2+3^2+5^2+\,\dots\,+(2n-1)^2\Big)&\\+\ \ &4\Big(1^2+2^2+3^2+\,\dots\,+n^2\Big)&=\dfrac{2n(2n+1)(4n+1)}{6}\end{aligned}[/tex]
Now the sums in LHS are, as written above,
[tex]1^2+3^2+5^2+\,\dots\,+(2n-1)^2=S[/tex]
[tex]1^2+2^2+3^2+\,\dots\,+n^2=\dfrac{n(n+1)(2n+1)}{6}[/tex]
So,
[tex]\longrightarrow S+\dfrac{4n(n+1)(2n+1)}{6}=\dfrac{2n(2n+1)(4n+1)}{6}[/tex]
[tex]\longrightarrow S=\dfrac{2n(2n+1)(4n+1)}{6}-\dfrac{4n(n+1)(2n+1)}{6}[/tex]
[tex]\longrightarrow S=\dfrac{2n+1}{6}\Big[2n(4n+1)-4n(n+1)\Big][/tex]
[tex]\longrightarrow S=\dfrac{2n+1}{6}\Big[4n^2-2n\Big][/tex]
[tex]\longrightarrow S=\dfrac{2n(2n-1)(2n+1)}{6}[/tex]
[tex]\longrightarrow\underline{\underline{S=\dfrac{n}{3}\,(4n^2-1)}}[/tex]
This is the expression for the sum of squares of first 'n' odd natural numbers.
