[tex](a+b)^n=\displaystyle\sum_{k=0}^n\binom nka^{n-k}b^k[/tex]
where [tex]\dbinom nk=\dfrac{n!}{k!(n-k)!}[/tex]. The second term of the expansion occurs when [tex]k=1[/tex].
So the second term of the expansion of [tex](2r-3s)^{12}[/tex] is
[tex]\dbinom{12}1(2r)^{12-1}(-3s)^1=12(2r)^{11}(-3s)=-73728r^{11}s[/tex]