Use synthetic division and remainder theorem to find P(a) P(x)
[tex]p(x) = {6x}^{4} + {19x}^{3} - {2x}^{2} - 44x - 24[/tex]
a=2/3

[tex]p(x) = {x}^{3} + {3x}^{2} - 5x - 4[/tex]
a=-1​

Respuesta :

Answer:

[tex]p\left(\dfrac{2}{3}\right)=-\dfrac{1280}{27}[/tex]

[tex]p \left(-1 \right)=3[/tex]

Step-by-step explanation:

Remainder Theorem

When we divide a polynomial p(x) by (x − a) the remainder is p(a).

Given:

[tex]\begin{cases}p(x)=6x^4+19x^3-2x^2-44x-24\\\\ a=\dfrac{2}{3}\end{cases}[/tex]

To find p(a), set up the synthetic division problem with the coefficients of the polynomial p(x) as the dividend and "a" as the divisor.

[tex]\begin{array}{c|ccccc}\frac{2}{3} &6&19&-2&-44&-24\\\cline{1-1}\end{array}[/tex]

Bring the leading coefficient straight down:

[tex]\begin{array}{c|ccccc}\frac{2}{3} & 6 & 19 & -2 & -44& -24\\\cline{1-1}& \downarrow & & & & \\\cline{2-6}& 6\end{array}[/tex]

Multiply the number you brought down with the number in the division box and put the result in the next column (under the 19):

[tex]\begin{array}{c|ccccc}\frac{2}{3} & 6 & 19 & -2 & -44& -24\\\cline{1-1}& \downarrow &4 & & & \\\cline{2-6}& 6\end{array}[/tex]

Add the two numbers together and put the result in the bottom row:

[tex]\begin{array}{c|crrrr}\frac{2}{3} & 6 & 19 & -2 & -44& -24\\\cline{1-1}& \downarrow &4 & & & \\\cline{2-6}& 6&23\end{array}[/tex]

Repeat:

[tex]\begin{array}{c|crrrr}\frac{2}{3} & 6 & 19 & -2 & -44& -24\\\cline{1-1}& \vphantom{\dfrac12}\downarrow &4 &\frac{46}{3} & & \\\cline{2-6} \vphantom{\dfrac12}& 6&23&\frac{40}{3}\end{array}[/tex]

[tex]\begin{array}{c|crrrr}\frac{2}{3} & 6 & 19 & -2 & -44& -24\\\cline{1-1}& \vphantom{\dfrac12}\downarrow &4 &\frac{46}{3} & \frac{80}{9}& \\\cline{2-6}& \vphantom{\dfrac12}6&23&\frac{40}{3}&-\frac{316}{9}\end{array}[/tex]

[tex]\begin{array}{c|crrrr}\frac{2}{3} & 6 & 19 & -2 & -44& -24\\\cline{1-1}&\vphantom{\dfrac12} \downarrow &4 &\frac{46}{3} & \frac{80}{9}&-\frac{632}{27} \\\cline{2-6}& \vphantom{\dfrac12}6&23&\frac{40}{3}&-\frac{316}{9}&-\frac{1280}{27}\end{array}[/tex]

The last number (remainder) is

[tex]-\dfrac{1280}{27}[/tex]

Therefore, according to the remainder theorem:

[tex]p\left(\dfrac{2}{3}\right)=-\dfrac{1280}{27}[/tex]

Check by substituting a = 2/3 into p(x):

[tex]\implies p\left(\dfrac{2}{3}\right)=6\left(\dfrac{2}{3}\right)^4+19\left(\dfrac{2}{3}\right)^3-2\left(\dfrac{2}{3}\right)^2-44\left(\dfrac{2}{3}\right)-24[/tex]

[tex]\implies p\left(\dfrac{2}{3}\right)=\dfrac{32}{27}+\dfrac{152}{27}-\dfrac{8}{9}-\dfrac{88}{3}-24[/tex]

[tex]\implies p\left(\dfrac{2}{3}\right)=-\dfrac{1280}{27}[/tex]

-------------------------------------------------------------------------------------------------

Given:

[tex]\begin{cases}p(x)=x^3+3x^2-5x-4\\ a=-1\end{cases}[/tex]

To find p(a), set up the synthetic division problem with the coefficients of the polynomial p(x) as the dividend and "a" as the divisor.

[tex]\begin{array}{c|crrr}-1 &1&3&-5&-4\\\cline{1-1}\end{array}[/tex]

Bring the leading coefficient straight down:

[tex]\begin{array}{c|crrr} -1 & 1&3&-5&-4\\\cline{1-1}& \downarrow & & & \\\cline{2-5}& 1\end{array}[/tex]

Multiply the number you brought down with the number in the division box and put the result in the next column (under the 3):

[tex]\begin{array}{c|crrr} -1 & 1&3&-5&-4\\\cline{1-1}& \downarrow & -1& & \\\cline{2-5}& 1\end{array}[/tex]

Add the two numbers together and put the result in the bottom row:

[tex]\begin{array}{c|crrr} -1 & 1&3&-5&-4\\\cline{1-1}& \downarrow & -1& & \\\cline{2-5}& 1&2\end{array}[/tex]

Repeat:

[tex]\begin{array}{c|crrr} -1 & 1&3&-5&-4\\\cline{1-1}& \downarrow & -1& -2& \\\cline{2-5}& 1&2&-7\end{array}[/tex]

[tex]\begin{array}{c|crrr} -1 & 1&3&-5&-4\\\cline{1-1}& \downarrow & -1& -2& 7\\\cline{2-5}& 1&2&-7&3\end{array}[/tex]

The last number (remainder) is 3.

Therefore, according to the remainder theorem:

[tex]p \left(-1 \right)=3[/tex]

Check by substituting a = -1 into p(x):

[tex]\implies p(-1)=(-1)^3+3(-1)^2-5(-1)-4[/tex]

[tex]\implies p(-1)=-1+3+5-4[/tex]

[tex]\implies p(-1)=3[/tex]