Respuesta :
Answer:
Approximately [tex]1.04 \; {\rm J \cdot g^{-1} \cdot K^{-1}}[/tex].
Explanation:
Multiply energy input by efficiency to find the useful energy output:
[tex]\begin{aligned}& (\text{useful out}\text{put}) \\ &= (\text{efficiency})\, (\text{energy in}\text{put}) \\ &= (87.5\%)\, (1560\; {\rm kJ}) \\&= (0.875)\, (1560\; {\rm kJ}) \\ &= 1365\; {\rm kJ}\end{aligned}[/tex].
In other words, [tex]1365\; {\rm kJ}[/tex] of energy was supplied to the air in the building.
The standard unit of energy is Joules ([tex]{\rm J}[/tex].) Apply unit conversion:
[tex]\begin{aligned}(1365\; {\rm kJ})\, \left(\frac{10000\; {\rm J}}{1\; {\rm kJ}}\right) = 1.365\times 10^{6}\; {\rm J}\end{aligned}[/tex].
Let [tex]c[/tex] denote the specific heat capacity of the air in this building. Let [tex]m[/tex] denote the mass of the air.
Let [tex]Q[/tex] denote the energy supplied to the air. Let [tex]\Delta T[/tex] denote the change in temperature. The equation [tex]Q = c\, m\, \Delta T[/tex] relates these quantities.
In this question, the change in the temperature of the air in this building is:
[tex]\Delta T = (22.1\; {\rm ^{\circ} C}) - (11.6\; {\rm ^{\circ} C}) = 10.5\; {\rm K}[/tex].
Rearrange the equation [tex]Q = c\, m\, \Delta T[/tex] to find specific heat capacity [tex]c[/tex]:
[tex]\begin{aligned}c &= \frac{Q}{m\, \Delta T} \\ &= \frac{1.365 \times 10^{6}\; {\rm J}}{(125\; {\rm kg})\, (10.5\; {\rm K})} \\ &\approx 1.04 \times 10^{3}\; {\rm J \cdot kg^{-1} \cdot K^{-1}}\end{aligned}[/tex].