Respuesta :

Answer:

[tex]\textsf{Slope form}: \quad y=-\dfrac{4}{5}x-\dfrac{26}{5}[/tex]

[tex]\textsf{Standard form}: \quad 4x+5y=-26[/tex]

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{6.3 cm}\underline{Slope-intercept form of a linear equation}\\\\$y=mx+b$\\\\where:\\ \phantom{ww}$\bullet$ $m$ is the slope. \\ \phantom{ww}$\bullet$ $b$ is the $y$-intercept.\\\end{minipage}}[/tex]

Given equation:

[tex]5x-4y=1[/tex]

Rewrite in slope-intercept form:

[tex]\implies 5x-4y+4y=1+4y[/tex]

[tex]\implies 5x=1+4y[/tex]

[tex]\implies 5x-1=1+4y-1[/tex]

[tex]\implies 5x-1=4y[/tex]

[tex]\implies \dfrac{5}{4}x-\dfrac{1}{4}=\dfrac{4y}{4}[/tex]

[tex]\implies y=\dfrac{5}{4}x-\dfrac{1}{4}[/tex]

Therefore, the slope of the line is ⁵/₄.

If two lines are perpendicular to each other, their slopes are negative reciprocals.

Therefore, the slope of the perpendicular line is -⁴/₅.

Substitute the found slope -⁴/₅ and given point (1, -6) into the slope-intercept formula and solve for b:

[tex]\implies -6=-\dfrac{4}{5}(1)+b[/tex]

[tex]\implies -6=-\dfrac{4}{5}+b[/tex]

[tex]\implies b=-\dfrac{26}{5}[/tex]

Therefore, the equation of the perpendicular line in slope form is:

[tex]y=-\dfrac{4}{5}x-\dfrac{26}{5}[/tex]

[tex]\boxed{\begin{minipage}{5.5 cm}\underline{Standard form of a linear equation}\\\\$Ax+By=C$\\\\where:\\ \phantom{ww}$\bullet$ $A, B$ and $C$ are constants. \\ \phantom{ww}$\bullet$ $A$ must be positive.\\\end{minipage}}[/tex]

Multiply both sides of the equation in slope form by 5:

[tex]\implies y \cdot 5=-\dfrac{4}{5}x\cdot 5-\dfrac{26}{5}\cdot 5[/tex]

[tex]\implies 5y=-4x-26[/tex]

Add 4x to both sides:

[tex]\implies 5y+4x=-4x-26+4x[/tex]

[tex]\implies 4x+5y=-26[/tex]

Therefore, the equation of the perpendicular line in standard form is:

[tex]4x+5y=-26[/tex]