last saturday at onyx health club 24/7 in northfield, ohio, 15 individuals were selected and the number of sit-ups that each could complete was recorded. the results are listed below. {27, 12, 18, 5, 16, 25, 30, 13, 35, 10, 1, 13, 33, 24, 22} (a) find the point estimate of the population mean number of sit-ups. (round your answer to 3 decimals.) (b) calculate the margin of error. (round your answer to 3 decimals.) (c) calculate the 95 percent confidence interval of the population mean number of sit-ups. (round each value to 3 decimals.)

Respuesta :

Point estimate of the population mean number of sit-ups is [tex]18.933$[/tex].

The margin of error is 5.615.

The 95 percent confidence interval of the population mean number of sit-ups is [tex][13.318,24.548]\end{aligned}$[/tex]

As per the given question 15 individuals were selected and the number of sit-ups that each could complete was recorded.

The results are {27, 12, 18, 5, 16, 25, 30, 13, 35, 10, 1, 13, 33, 24, 22}

(a):

The sample mean is,

[tex]$\overline{\mathrm{X}}=\frac{\sum \mathrm{x}}{\mathrm{n}}\\\\[/tex]

[tex]=\frac{27+12+18+5+16+25+30+13+35+10+1+13+33+24+22}{15} \\\\[/tex]

[tex]=18.9333$[/tex]

The point estimate of the population mean number of sit-ups is,

Point estimate [tex]$=\overline{\mathrm{X}}=18.933$[/tex]

(b):

The sample standard deviation is,

[tex]$\mathrm{s}=\sqrt{\frac{\sum X^2-\frac{\left(\sum X\right)^2}{n}}{n-1}}[/tex]

[tex]$\mathrm{s}=\sqrt{\frac{18.9333^2-\frac{\left(18.333\right)^2}{15}}{15-1}}=10.1381$[/tex]

The confidence level is, c=0.95

The significance level is [tex]$\alpha=1-c=1-0.95=0.05$[/tex]

The degrees of freedom is given by,

[tex]$=\mathrm{n}-1\\=15-1\\=14$[/tex]

The critical value is, [tex]$t_{\frac{\alpha}{2} , d f}=t_{\frac{0.05}{2,14}}=2.145$[/tex]

The Excel function is, TINV(0.05,14)

The margin of error is,

[tex]$\begin{aligned}\mathrm{E} & =\mathrm{t}_{\frac{\alpha}{2}, \mathrm{df}} \times \frac{\mathrm{s}}{\sqrt{\mathrm{n}}} \\& =2.145 \times \frac{10.1381}{\sqrt{15}} \\& =5.615\end{aligned}$[/tex]

(c):

The 95% confidence interval of the population mean number of sit-ups is,

[tex]\begin{aligned}95 \% \text { C. I. } & =\overline{\mathrm{X}} \pm \mathbf{E} \\& =18.933 \pm 5.615 \\& =[13.318,24.548]\end{aligned}$[/tex]

Therefore, [tex]$\overline{\mathrm{X}}=18.9333[/tex], [tex]$\begin{aligned}\mathrm{E} & =5.615\end{aligned}$[/tex] and 95% confidence interval of the population mean number of sit-ups is [tex][13.318,24.548]\end{aligned}$[/tex].

For more questions on point estimation

https://brainly.com/question/16940212

#SPJ4

ACCESS MORE