Respuesta :
The value of t = 1.960681
We have to find the value of a t.
For men,
Sample size ([tex]n_{1}[/tex]) = 1544
Sample mean ([tex]x_{1}[/tex]) = 192.4
Standard deviation ([tex]s_{1}[/tex]) = 35.2
For women,
Sample size ([tex]n_{2}[/tex]) = 1766
Sample mean ([tex]x_{2}[/tex]) = 207.1
Standard deviation ([tex]s_{2}[/tex]) [tex]= 36.7[/tex]
Confidential level (c) = 95% = 0.95
Level of significance ([tex]\alpha[/tex]) = 0.05
To find the t critical value corresponding to the probability 0.05 and
Degrees of freedom is (df) = [tex]n_{1}+n_{2}-2=1544+1766-2=3308[/tex]
We use below excel syntax.
=TINV(probability, degrees of freedom)
Please type in any empty cell of excel == TINV(0.05, 3308) then hit entre button.
The required z value is t = 1.960681.
(a). The required 95% confidence interval for the difference in population cholesterol levels between men and women is given by,
[tex]\text { C.I }=\left(\overline{\mathrm{x}}_1-\overline{\mathrm{x}}_2\right) \pm \mathrm{t} \times \mathrm{s}_{\mathrm{p}} \sqrt{\left(\frac{1}{\mathrm{n}_1}+\frac{1}{\mathrm{n}_2}\right)}$[/tex]
Where,
[tex]$\begin{aligned}\mathrm{s}_{\mathrm{p}} & =\sqrt{\frac{\left(\mathrm{n}_1-1\right) \times \mathrm{s}_1^2+\left(\mathrm{n}_2-1\right) \times \mathrm{s}_2^2}{\mathrm{n}_1+\mathrm{n}_2-2}} \\& =\sqrt{\frac{(1,544-1) \times 35.2^2+(1,766-1) \times 36.7^2}{1,544+1,766-2}} \\& =\sqrt{1,296.584} \\& =36.00811\end{aligned}$[/tex]
Therefore,
[tex]$\begin{aligned}\text { C.I } & =\left(\overline{\mathrm{x}}_1-\overline{\mathrm{x}}_2\right) \pm \mathrm{t} \times \mathrm{s}_{\mathrm{p}} \sqrt{\left(\frac{1}{\mathrm{n}_1}+\frac{1}{\mathrm{n}_2}\right)} \\& =(192.4-207.1) \pm 1.960681 \times 36.00811 \sqrt{\left(\frac{1}{1,544}+\frac{1}{1,766}\right)} \\& =(-14.7) \pm 1.960681 \times 36.00811 \times 0.034841 \\& =-14.7 \pm 2.459814 \\& =(-17.16,-12.24)\end{aligned}$[/tex]
The required 95% confidence interval for the difference in population cholesterol levels between men and women is (-17.16, -12.24)
(b). We are given,
Null hypothesis [tex]$\left(H_0\right): \mu_M-\mu_{\mathrm{W}}=0$[/tex]
According to the answer of part a), If the confidence interval does not include the null value (zero), so we reject the null hypothesis.
We conclude that there is a statistically significant difference between the groups.
Conclusion
Reject[tex]H_{0}[/tex]. There is significance difference between the men and women have different cholesterol levels.
For more questions on null hypothesis
https://brainly.com/question/25263462