Planet 1 has mass 3M and radius R, while Planet 2 has mass 4M and radius 2R. They are separated by center-to-center distance 8R. A rock is placed halfway between their centers at point O. It is released from rest. Ignore any motion of the planets.8R Hints: deduction per hint. Hints remaining: Feedback:
33%
Part (b) Towards which planet is the direction of the acceleration in part a)?

Correct! A
33%
Part (c) The rock is released from rest at point
O
. Derive an expression for the speed
v
with which the rock crashes into a planet.

Respuesta :

The speed with which the rock crashes into a planet is   [tex]v=1.345 m/s[/tex].

Given,

         The mass of planet 1 is 3M

         The radius of planet 1 is R

         The mass of planet 2 is 4M

         The radius of planet 2 is 2R

         Distance between the two planets; r = 8R

         The value of R is; [tex]R=5.8[/tex] × [tex]10^{6} m[/tex]

         The value of M is; [tex]M=7.3[/tex] × [tex]10^{23} kg[/tex]

Using Newton's universal gravitational law, the gravitational force on the rock (4R)etween the two planets is computed as follows:

                                 [tex]F=\frac{G(3M)(4M)}{(4R)^{2} }[/tex]

                                 [tex]F=\frac{G(12M^{2} )}{16R^{2} }[/tex]

Where,

         G = Universal Gravitational Constant = [tex]6.6743 * 10^{-11} \frac{m^{3} }{kgs^{2} }[/tex]

On solving,

                               [tex]F=\frac{(6.67*10^{-11} )*12*(7.3*10^{23} )^{2} }{16(5.8*10^{6}) }[/tex]

                               [tex]F=7.925[/tex] × [tex]10^{23} N[/tex]

Now, the acceleration of rock is calculated as,

We know that,

         Kinetic Energy; [tex]KE=\frac{1}{2}mv^{2}[/tex] and

         Potential Energy; [tex]PE=\frac{GMm}{R}[/tex]

Applying the law of conservation of energy,

       [tex]\frac{3GMm}{4R} -\frac{4GMm}{4R} = \frac{1}{2} mv^{2}+\frac{3GMm}{6R} -\frac{4GMm}{2R}[/tex]

                    [tex]-\frac{GMm}{4R}=\frac{1}{2}mv^{2} -\frac{3GMm}{2R}[/tex]

                     

                       [tex]\frac{1}{2} mv^{2} = \frac{5GMm}{4R}[/tex]

                           [tex]v^{2}=\frac{5GM }{2R}[/tex]

                            [tex]v =\sqrt{\frac{5GM}{2R} }[/tex]

Putting the values of G, M and R we get

                           [tex]v=\sqrt{\frac{5*6.6743*10^{-11} *7.3*10^{23} }{2*5.8*10^{6} } }[/tex]

                     

                           [tex]v=1.345 m/s[/tex]

The speed with which the rock crashes into a planet is   [tex]v=1.345 m/s[/tex].

Learn more about Gravity here

https://brainly.com/question/940770

#SPJ4

ACCESS MORE