If m∠BOC = (3x + 1)° and m∠COD = (11x − 3)°, what is m∠COD?
13°
40°
69°
140°

The correct answer is:
140°
If m∠BOC = (3x + 1)° and m∠COD = (11x − 3)°, then the measure of angle COD is 140°. This can be determined by substituting the given values for the measures of angles BOC and COD into the equation m∠COD = m∠BOC + m∠COD. This gives us the following equation:
m∠COD = (3x + 1)° + (11x − 3)°
Solving for m∠COD, we get:
m∠COD = 14x − 2
Substituting the given value for x, we get:
m∠COD = 14(10) − 2 = 140°
Therefore, the measure of angle COD is 140°.
Please give me brainliest for more high quality answers! - longstretch
Answer:
D) 140°
Step-by-step explanation:
Angles BOC and COD form a linear pair.
Therefore, the sum of the two angles is 180°.
⇒ m∠BOC + m∠COD = 180°
⇒ (3x + 1)° + (11x - 3)° = 180°
⇒ 3x + 1 + 11x - 3 = 180
⇒ 3x + 11x + 1 - 3 = 180
⇒ 14x - 2 = 180
⇒ 14x - 2 + 2 = 180 + 2
⇒ 14x = 182
⇒ 14x ÷ 14 = 182÷ 14
⇒ x = 13
To find the measure of angle COD, substitute the found value of x into the expression for m∠COD:
⇒ m∠COD = (11x - 3)°
⇒ m∠COD = (11 · 13 - 3)°
⇒ m∠COD = (143 - 3)°
⇒ m∠COD = 140°