The declaration claims that the truss can support 77.689 Kips without enabling the member to collapse.
Trusses are typically utilized in bridges, towers, cranes, walkways, and roof structures for big span buildings. They can support heavier loads and utilise cross-sections more effectively.
∑MG = 0
(48)*Ay - 32*P-16*P=0
Ay = P
Considers joint A
∑fy = 0
Ay - [tex]F_{AB}[/tex] Sin∅ = 0
Ay - [tex]F_{AB}[/tex] Sin (36.87°) = 0
P - [tex]F_{AB}[/tex] Sin (36.87°) = 0
[tex]F_{AB}[/tex] = P-/0-6
Given:
r = 2.4 in⁴
and moment of inertia;
I = r/64*d⁴
= r/64(2*2.4)⁴
I = 26.05 inch
From Euler's formula:
[tex]P_{cr}[/tex] = r²EI/(k2)²
[tex]F_{AB}[/tex] = r²EI/(k[tex]L_{AB}[/tex])²
[tex]$\frac{P}{0.6}=\frac{r^2 \cdot\left(29 \times 10^3 \mathrm{kes} 1\right) \times\left(26.0576^{\circ} \mathrm{in}^4\right)}{(1 \times 20 \times 12)^2}$[/tex]
P = (129.482)*0.6
P = 77.689 Kips
To know more about Truss visit:
https://brainly.com/question/29758104
#SPJ4