Respuesta :
The average distance from a point in the ball to its center = [tex]\frac{3}{4}[/tex] A
Given the radius in the question = a
The integration of the total distance before dividing the volume will be =
⇒ [tex]\int_0^{2\pi}\int_0^\pi\int_0^A a\cdot a^2\sin\theta\,da\,d\theta\,d\phi[/tex]
⇒ [tex]\int_0^{2\pi}\int_0^\pi\int_0^A a^3\sin\theta\,da\,d\theta\,d\phi[/tex]
⇒ [tex]\frac{A^{4} }{2}[/tex] [tex]\int_0^{2\pi}\int_0^\pi \sin\theta\,d\theta\,d\phi[/tex]
⇒ [tex]\frac{A^{4} }{2}[/tex] [tex]\int_0^{2\pi}1\,d\phi[/tex]
⇒ [tex]\pi A^{4}[/tex]
Let us divide the average distance by the ball's volume,
⇒ [tex]\frac{\pi a^4}{(4/3)\pi a^3}[/tex]
⇒ [tex]{\frac{3a}4}[/tex]
By the use of the Parcly Taxel's way,
Let the radius of the ball be = A
f(x) = probability density function
Distance = D from the given point to the center.
P( D < a )
[tex]\begin{align}P(D\leq r)&= \frac{ \frac 43 \pi r^3 }{\frac 43 \pi R^3}=\frac {r^3}{R^3}, \ \ \ 0\leq r\leq R. \end{align}[/tex][tex]\frac{\frac{4}{3} \pi a^{3} }{\frac{4}{3} \pi A^{3} } = \frac{a^{3} }{R^{3} }[/tex]. 0 [tex]\leq[/tex] a [tex]\leq[/tex] A
Therefore, The average distance from a point in the ball to its center = [tex]\frac{3}{4}[/tex] A
To know more about Spherical coordinates,
https://brainly.com/question/19053603
#SPJ4