Respuesta :

the angle sum of triangle is 180 degrees. it can be explained because all the angle sum is just the number of sides - 2 and multiply them by 180.
and the exterior angle sum of any sides of polygon, including triangle is always 360 degrees

Answer:

5.[tex]m\angle 1=47^{\circ}[/tex]

[tex]m\angle 2=137^{\circ}[/tex]

[tex]m\angle 3=31^{\circ}[/tex]

7.[tex]m\angle 1=87^{\circ}[/tex]

[tex]m\angle 2=45^{\circ}[/tex]

[tex]m\angle 3=45^{\circ}[/tex]

[tex]m\angle 4=52^{\circ}[/tex]

Step-by-step explanation:

5.[tex]\angle 1+43^{\circ}+90^{\circ}=180^{\circ}[/tex]

By triangle angle sum theorem

[tex]\angle +133^{\circ}=180^{\circ}[/tex]

Addition property of integers

[tex]\angle 1=180-133=47^{\circ}[/tex]

By using subtraction property of equality

[tex]m\angle 1=47^{\circ}[/tex]

[tex]m\angle 2=90+47=137^{\circ}[/tex]

By using exterior angle theorem

[tex]90+47+12+m\angle 3=180^{\circ}[/tex]

By using triangle angle sum theorem

[tex]149+m\angle 3=180[/tex]

Addition property of integers

[tex]m\angle 3=180-149=31^{\circ}[/tex]

Using subtraction property of equality

[tex]m\angle 3=31^{\circ}[/tex]

7.We are given that

[tex]m\angle ACD=90^{\circ}[/tex]

BC bisects angle ACD

[tex]m\angle 2=m\angle 3[/tex]

Therefore, [tex]m\angle 2=\frac{90}{2}=45^{\circ}[/tex]

[tex]m\angle 2=m\angle 3=45^{\circ}[/tex]

[tex]m\angle 1+m\angle 2+48=180^{\circ}[/tex]

By using triangle angle sum theorem

Substitute the value

[tex]45+m\angle 1+48=180[/tex]

[tex]m\angle 1+93=180[/tex]

By addition property of integers

[tex]m\angle 1=180-93=87^{\circ}[/tex]

By using subtraction property of equality

[tex]m\angle 3+m\angle 4+83=180^{\circ}[/tex]

By using triangle angle sum property

Substitute the values

[tex]45+m\angle 4+83=180[/tex]

[tex]128+m\angle 4=180[/tex]

Using addition property of integers

[tex]m\angle 4=180-128=52^{\circ}[/tex]

Using subtraction property of equality

ACCESS MORE
EDU ACCESS
Universidad de Mexico