The number of bacteria after 28 hours is 9437184. It will take 14.1 hours to reach 10000 bacteria.
a) estimate the number of bacteria after 28 hours.
N(t) = [tex]9*2[/tex]^[tex]\frac{28}{1.4}[/tex]
using the calculations
N(t) =[tex]9 * 1048576[/tex]
N(t) = 9437184 bacteria in 28 hours.
b) after how many hours will the bacteria count reach 10,000?
[tex]9*2^{(t/1.4)}[/tex] = 10000
find t
[tex]2^{(t/1.4)}[/tex] = 10000/9
[tex]2^{(t/1.4)}[/tex] = 1111.1
Using nat logs,
[tex]\frac{t}{1.4}[/tex]ln(2) = ln(1111.1)
[tex]\frac{t}{1.4}[/tex] = [tex]\frac{ln(1111.1)}{In2}[/tex]
using calculations
[tex]\frac{t}{1.4}[/tex] = 10.1178
t = 10.1178 * 1.4
t = 14.1 hours to reach 10000 bacteria
Learn more about bacteria
https://brainly.com/question/8008968
#SPJ4