In the figure, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length a = 13.5 cm. Each wire carries 7.50 A, and the currents are out of the page in wires 1 and 4 and into the page in wires 2 and 3. In unit-vector notation, what is the net magnetic force per meter of wire length on wire 4?

Respuesta :

Using superposition of forces, F4= F14 + F24 + F34. With θ=45°, the situation is as shown on the right.

The components of F4 are given by

F4x =−F43 − F42cosθ

=μ[tex]_0[/tex][tex]i^2[/tex]/2πa -μ[tex]_0[/tex][tex]i^2[/tex]cos45/2[tex]\sqrt{2}[/tex]πa

=-3μ[tex]_0[/tex][tex]i^2[/tex]/4πa

and F4y = F41 −F42​sinθ

=μ[tex]_0[/tex][tex]i^2[/tex]/2πa -μ[tex]_0[/tex][tex]i^2[/tex]vsin45/2[tex]\sqrt{2}[/tex]πa

=μ[tex]_0[/tex][tex]i^2[/tex]/4πa

Thus,

F4 =(F4[tex]x^{2}[/tex]+F4[tex]y^2[/tex])[tex]^1^/^2[/tex]

=[(-3μ[tex]_0[/tex][tex]i^2[/tex]/4πa )[tex]^1^/^2[/tex]+(μ[tex]_0[/tex][tex]i^2[/tex]/4πa)[tex]^1^/^2[/tex]][tex]^1^/^2[/tex]

=[tex]\sqrt{10}[/tex]μ[tex]_0[/tex][tex]i^2[/tex]/4πa

=([tex]\sqrt{10}[/tex](4π×[tex]10^-^7[/tex])×7.5[tex]0^2[/tex])/4π(0.135)

​=1.317×1[tex]0^-^4[/tex] N/m

and F4 makes an angle ϕ with the positive x axis, where ϕ=ta[tex]n^-^1[/tex]( F4x, F4)

=tan−1(-1/3)=162°

In unit-vector notation, we have

F4=(1.317×1[tex]0^-^4[/tex])[cos 162i+sin 162j]

=(-1.252×1[tex]0^-^4[/tex])i+(0.406×1[tex]0^-^4[/tex])j

To know more about magnetic force here:

https://brainly.com/question/3160109

#SPJ4

RELAXING NOICE
Relax