Using superposition of forces, F4= F14 + F24 + F34. With θ=45°, the situation is as shown on the right.
The components of F4 are given by
F4x =−F43 − F42cosθ
=μ[tex]_0[/tex][tex]i^2[/tex]/2πa -μ[tex]_0[/tex][tex]i^2[/tex]cos45/2[tex]\sqrt{2}[/tex]πa
=-3μ[tex]_0[/tex][tex]i^2[/tex]/4πa
and F4y = F41 −F42sinθ
=μ[tex]_0[/tex][tex]i^2[/tex]/2πa -μ[tex]_0[/tex][tex]i^2[/tex]vsin45/2[tex]\sqrt{2}[/tex]πa
=μ[tex]_0[/tex][tex]i^2[/tex]/4πa
Thus,
F4 =(F4[tex]x^{2}[/tex]+F4[tex]y^2[/tex])[tex]^1^/^2[/tex]
=[(-3μ[tex]_0[/tex][tex]i^2[/tex]/4πa )[tex]^1^/^2[/tex]+(μ[tex]_0[/tex][tex]i^2[/tex]/4πa)[tex]^1^/^2[/tex]][tex]^1^/^2[/tex]
=[tex]\sqrt{10}[/tex]μ[tex]_0[/tex][tex]i^2[/tex]/4πa
=([tex]\sqrt{10}[/tex](4π×[tex]10^-^7[/tex])×7.5[tex]0^2[/tex])/4π(0.135)
=1.317×1[tex]0^-^4[/tex] N/m
and F4 makes an angle ϕ with the positive x axis, where ϕ=ta[tex]n^-^1[/tex]( F4x, F4)
=tan−1(-1/3)=162°
In unit-vector notation, we have
F4=(1.317×1[tex]0^-^4[/tex])[cos 162i+sin 162j]
=(-1.252×1[tex]0^-^4[/tex])i+(0.406×1[tex]0^-^4[/tex])j
To know more about magnetic force here:
https://brainly.com/question/3160109
#SPJ4