The required value of focus of the parabola is (3, 2).
A parabola is set of all places in a plane which are an equivalent separation away from a given point and given line. The fact is known as the focal point of the parabola and the line is known as the directrix. The emphasis lies on the hub of balance of the parabola.
parabola: f(x) = 1/4 (x – 3)^2 + 1
On comparing with general formula y = a(x - h)^2 +k
We get,
a = 1/4
h = 3
k = 1
vertex is (3, 1)
Now, we need p the distance from the vertex to the focus.
⇒ 1/4a
⇒ 1/4/4
⇒ 1
Then focus of parabola is( h, k+p ) = (3, 2)
To know more about parabola visit:
brainly.com/question/21685473
#SPJ1