Respuesta :
By using the concept of maxima, it can be determined that
[tex]f_x(x, y) = \frac{y}{2\sqrt{x}} - 3[/tex]
[tex]f_y(x, y) = \sqrt{x} - 2y +11[/tex]
[tex]f_{xx}(x, y) = -\frac{1}{4}x^{-\frac{3}{2}}[/tex]
[tex]f_{yy} = -2[/tex]
[tex]f_{xy} = \frac{1}{2\sqrt{x}}[/tex]
Critical point with the smallest x - coordinate
(0, [tex]\frac{11}{2}[/tex])
Classification cannot be determined
Critical point with the next smallest x - coordinate
(1, 6)
Classification is local maxima
What is maxima of a function?
Maxima of a function gives the maximum value of a function in a given interval or within the whole domain.
f(x, y) = [tex]y\sqrt{x} -y^2 -3x + 11y[/tex]
[tex]f_x(x, y) = \frac{y}{2\sqrt{x}} - 3[/tex]
[tex]f_y(x, y) = \sqrt{x} - 2y +11[/tex]
Putting x = 0 in [tex]f_y(x, y) = 0[/tex],
-2y + 11 = 0
[tex]y = \frac{11}{2}[/tex]
[tex](0, \frac{11}{2})[/tex] is a critical point
Putting [tex]f_x(x, y) = 0[/tex] and [tex]f_y(x, y) = 0[/tex]
[tex]\frac{y}{2\sqrt{x}} - 3 = 0\\\frac{y}{2\sqrt{x}} = 3\\y = 6\sqrt{x}[/tex]
[tex]\sqrt{x} - 2y+11 = 0\\\sqrt{x} -2\times 6\sqrt{x}+11=0\\\sqrt{x}-12\sqrt{x} + 11 = 0\\11\sqrt{x} = 11\\\sqrt{x} = \frac{11}{11}\\\sqrt{x} = 1\\x = 1[/tex]
When x = 1, y = [tex]6 \times \sqrt{1} = 6[/tex]
(1, 6) is a critical point
[tex]f_{xx}(x, y) = -\frac{1}{4}x^{-\frac{3}{2}}[/tex]
[tex]f_{yy} = -2[/tex]
[tex]f_{xy} = \frac{1}{2\sqrt{x}}[/tex]
The point (0, [tex]\frac{11}{2}[/tex]) is undefined in the second order partial derivative
For the critical point (1, 6)
[tex]f_{xx}(1, 6) = -\frac{1}{4}\\f_{yy}(1, 6) = -2\\f_{xy}(1, 6) = \frac{1}{2}[/tex]
[tex]f_{xx}f_{yy}-(f_{xy})^2[/tex]
[tex]-\frac{1}{4}\times -2-(\frac{1}{2})^2\\\frac{1}{2} - \frac{1}{4}\\\frac{1}{4} > 0[/tex]
[tex]f_{yy} = -2 < 0[/tex]
Hence (1, 6) is a point of local maxima
So it can be determined that
[tex]f_x(x, y) = \frac{y}{2\sqrt{x}} - 3[/tex]
[tex]f_y(x, y) = \sqrt{x} - 2y +11[/tex]
[tex]f_{xx}(x, y) = -\frac{1}{4}x^{-\frac{3}{2}}[/tex]
[tex]f_{yy} = -2[/tex]
[tex]f_{xy} = \frac{1}{2\sqrt{x}}[/tex]
Critical point with the smallest x - coordinate
(0, [tex]\frac{11}{2}[/tex])
Classification cannot be determined
Critical point with the next smallest x - coordinate
(1, 6)
Classification is local maxima
To learn more about maxima, refer to the link-
https://brainly.com/question/82347
#SPJ4
