A right triangle has side lengths 8,15, and 17 as shown below . Use these lengths to find sinL, tanL, and cosL

Answer:
[tex]\sf Sin \ L =\dfrac{8}{17} \\\\\\Tan \ L =\dfrac{8}{15}\\\\\\Cos \ L =\dfrac{15}{17}[/tex]
Step-by-step explanation:
[tex]\sf Sin \ L = \dfrac{opposite \ side \ of \angle L}{hypotenuse}\\[/tex]
[tex]\sf Sin \ L = \dfrac{NM}{LM}=\dfrac{8}{17}[/tex]
[tex]\sf Tan \ L = \dfrac{opposite \ side \ of \ \angle L}{adjacent \ side \ of \ \angle L}[/tex]
[tex]\sf Tan \ L =\dfrac{NM}{LN}=\dfrac{8}{15}[/tex]
[tex]\sf Cos \ L =\dfrac{adjacent \ side \ of \ \angle L}{hypotenuse}[/tex]
[tex]\sf Cos \ L =\dfrac{LN}{LM}=\dfrac{15}{17}[/tex]