Respuesta :
Answer:
- D) Translate each point of the graph of h(x) 3 units left
----------------------------
If the given function is f(x), then rules of translation by b units are:
- Translation up or down by b units is reflected as f(x) + b, or f(x) - b.
- Translation left is given as f(x + b), translation right is given as f(x - b).
Our function and its image are:
- h(x) = log₆ (x) ⇒ m(x) = log₆ (x + 3)
Therefore we have translation left by 3 units.
Correct choice is D.
Answer:
Translate each point of the graph of h(x) 3 units left.
Step-by-step explanation:
Translations
For a > 0
[tex]f(x+a) \implies f(x) \: \textsf{translated $a$ units left}.[/tex]
[tex]f(x-a) \implies f(x) \: \textsf{translated $a$ units right}.[/tex]
[tex]f(x)+a \implies f(x) \: \textsf{translated $a$ units up}.[/tex]
[tex]f(x)-a \implies f(x) \: \textsf{translated $a$ units down}.[/tex]
Given functions:
[tex]h(x)= \log_6 x[/tex]
[tex]m(x)= \log_6(x+3)[/tex]
As m(x) = h(x+3), to graph the function m(x), translate the function h(x) 3 units left.

Otras preguntas
