Respuesta :
Answer:
[tex]250\; {\rm N}[/tex] (downwards.)
Approximately [tex]8.3\; {\rm m\cdot s^{-2}}[/tex]
(Assuming that the gravitational field strength is [tex]g \approx 10\; {\rm m\cdot s^{-2}}[/tex].)
Explanation:
Note that [tex]1\; {\rm kg \cdot m\cdot s^{-2}} = 1\; {\rm N}[/tex].
There are two forces on this object:
- weight (downward), and
- air resistance (upwards.)
Let [tex]g[/tex] denote the gravitational field strength. The weight of an object of mass [tex]m[/tex] will be [tex]m\, g[/tex].
In this example, since [tex]m = 30\; {\rm kg}[/tex] and [tex]g \approx 10\; {\rm m\cdot s^{-2}}[/tex] around the surface of the earth. The weight of this object will be:
[tex]\begin{aligned}m\, g &\approx (30\; {\rm kg})\, (10\; {\rm m\cdot s^{-2}}) \\ &= 300\; {\rm kg \cdot m\cdot s^{-2}} \\ &= 300\; {\rm N}\end{aligned}[/tex].
The air resistance on this object is given to be [tex]50\; {\rm N}[/tex] (upwards.) Since the two forces are in opposite directions, the magnitude of the resultant force on the object will be the difference between their magnitudes:
[tex]\begin{aligned} &(\text{resultant force}) \\ &= (\text{weight}) - (\text{resistance}) \\ & \approx (300\; {\rm N}) - (50\; {\rm N}) \\ &= 250\; {\rm N}\end{aligned}[/tex].
(Downwards.)
Divide the resultant force on the object by the mass [tex]m[/tex] of the object to find the acceleration of the object:
[tex]\begin{aligned}& (\text{acceleration}) \\ &= \frac{(\text{resultant force})}{(\text{mass})} \\ &\approx \frac{250\; {\rm N}}{30\; {\rm kg}} \\ &= 8.3\; {\rm m \cdot s^{-2}}\end{aligned}[/tex].