Use Log(b)2 = 0.401, log(b)3 =0.503, and log(b)5 = 0.842 to approximate the value of the given logarithm to decimal places log(b)50 . Assume that b>0 and [tex]b\neq 1[/tex]

Use Logb2 0401 logb3 0503 and logb5 0842 to approximate the value of the given logarithm to decimal places logb50 Assume that bgt0 and texbneq 1tex class=

Respuesta :

Answer:

  • ≈ 2.085

-------------------------

Given

  • [tex]log_b2 = 0.401, \ log_b3=0.503, \ log_b5=0.842[/tex]

Work out the value of  [tex]log_b50[/tex]

  • [tex]log_b50=[/tex]
  • [tex]log_b(2*25)=[/tex]
  • [tex]log_b(2*5^2)=[/tex]
  • [tex]log_b2+log_b5^2=[/tex]
  • [tex]log_b2+2log_b5=[/tex]
  • [tex]0.401 + 2*(0.842)=[/tex]
  • [tex]2.085[/tex]