Respuesta :
Answer:
- f(x) = 2(x + 13/4)² - 9/8
--------------------
Given
- Function f(x) = 2x² + 13x + 20
Rewrite it by completing the square
- f(x) =
- 2x² + 13x + 20 =
- 2(x² + 13/2 x) + 20 =
- 2[x² + 2x*13/4 + (13/4)² - (13/4)²] + 20 =
- 2(x + 13/4)² - 169/8 + 20 =
- 2(x + 13/4)² - (169 - 8*20)/8 =
- 2(x + 13/4)² - 9/8
Answer:
[tex]f(x)=2\left(x+\dfrac{13}{4}\right)^2-\dfrac{9}{8}[/tex]
Step-by-step explanation:
Given function:
[tex]f(x)=2x^2+13x+20[/tex]
Factor out 2 from the terms in x:
[tex]f(x)=2\left(x^2+\dfrac{13}{2}x\right)+20[/tex]
Add the square of half the coefficient of x inside the parentheses, and subtract the distributed equivalent outside the parentheses:
[tex]f(x)=2\left(x^2+\dfrac{13}{2}x+\left(\dfrac{\frac{13}{2}}{2}\right)^2\right)+20-2\left(\dfrac{\frac{13}{2}}{2}\right)^2[/tex]
Simplify:
[tex]f(x)=2\left(x^2+\dfrac{13}{2}x+\left(\dfrac{13}{4}\right)^2\right)+20-2\left(\dfrac{13}{4}\right)^2[/tex]
[tex]f(x)=2\left(x^2+\dfrac{13}{2}x+\dfrac{169}{16}\right)+20-\dfrac{169}{8}[/tex]
[tex]f(x)=2\left(x^2+\dfrac{13}{2}x+\dfrac{169}{16}\right)-\dfrac{9}{8}[/tex]
Factor the perfect trinomial inside the parentheses:
[tex]f(x)=2\left(x+\dfrac{13}{4}\right)^2-\dfrac{9}{8}[/tex]