Respuesta :

If the quadratic function f(x) = [tex]x^2[/tex] - 16x + 73 is equal to zero when

x = a +bi, then the value of a = 8 and the value of b = ±3

The given quadratic function is

f(x) = [tex]x^2[/tex] - 16x + 73

The value of a = 1

The value of b = -16

The value of c = 73

The quadratic equation = [tex]\frac{-b+/-\sqrt{b^2-4ac} }{2a}[/tex]

Substitute the values in the equation

= [tex]\frac{+16+/-\sqrt{(-16)^2-4(1)(73)} }{2(1)}[/tex]

Do the arithmetic operations

= [tex]\frac{+16+/-\sqrt{256-292} }{2}[/tex]

Subtract the terms

= [tex]\frac{16+/-\sqrt{-36} }{2}[/tex]

= (16±6i) / 2

= 8 ± 3i

Hence, if the quadratic function f(x) = [tex]x^2[/tex] - 16x + 73 is equal to zero when

x = a +bi, then the value of a = 8 and the value of b = ±3

The complete question is:

The quadratic function f(x) = [tex]x^2[/tex] - 16x + 73 is equal to zero when

x = a +bi, find the value of a and b

Learn more about quadratic function here

brainly.com/question/9406557

#SPJ4

ACCESS MORE