The consumer's surplus under pure competition is 3.005
The demand function for product p = 28/(x + 1) and the supply function p= 1 + 0. 2x,
the equilibrium points are p and x
p = 28/(x + 1),p=1 + 0. 2x,
to calculate equilibrium points just equal both p functions,
28/(x + 1)=1 + 0. 2x,
28=(1+0.2x)*(1+x),
28=1+1.2x+0.2[tex]x^{2}[/tex],
0.2[tex]x^{2}[/tex]+1.2x-27=0,
by using quadratic equation formula,
[tex]x=-b+\sqrt{b^{2}-4ac } /2a[/tex],
[tex]x=-1.2+\sqrt{1.2^{2}-4*0.2*27} /2*0.2[/tex],
x=-1.2+4.86/0.4,
x=9.15,
p = 28/(x + 1),
p=28/9.15+1,
p=28/10.15,
p=2.75,
the equilibrium points are x=9.15,p=2.75,
The consumer surplus is
[tex]\int\limits^x_0 {p} \, dx -p*x[/tex]
[tex]\int\limits^x_0 {28/x+1} \, dx-9.15*2.75[/tex]
=[tex]\left \{ {{x=9.15} \atop {x=0}} \right.[/tex]28(log(x+1))-25.1625
=3.005
The consumer surplus is 3.005
To solve more questions about consumer's surplus:
https://brainly.com/question/6219503
#SPJ4