Respuesta :
Answer:
0.21ft/min
Step-by-step explanation:
[tex]\sf Volume \ at \ given \ time = \dfrac{dV}{dt}= 20 \ cubic \ feet /min[/tex]
h = d
h = 2r
[tex]\sf r = \dfrac{h}{2}[/tex]
Volume of heap = (1/3) πr²h
[tex]\sf V =\dfrac{1}{3}\pi r^2h\\\\V =\dfrac{1}{3}\pi (\frac{h}{2})^2h\\\\V =\dfrac{1}{3}\pi \dfrac{h^2}{4}*h\\\\V=\dfrac{1}{12}\pi h^3[/tex]
Take derivative w.r.t time,
[tex]\sf \dfrac{dV}{dt}=\dfrac{1}{12}\pi * 3h^2 \dfrac{dh}{dt}[/tex]
h = 11 ft
[tex]\sf 20 = \dfrac{1}{12}\pi *3*11*11*\dfrac{dh}{dt}\\\\20=\dfrac{121}{4}\pi \dfrac{dh}{dt}\\\\[/tex]
[tex]\sf \dfrac{20*4}{121*\pi }=\dfrac{dh}{dt}\\\\ \dfrac{80}{120*3.14}=\dfrac{dh}{dt}[/tex]
[tex]\sf \dfrac{dh}{dt}=0.21[/tex]
The height is increasing at the rate of 0.21 ft/min