please help meee :((
The system of conics has two solutions.

(x−4)2+(y+1)2=9
(x−4)29+(y+1)281=1

What are the solutions to this system of conics?

please help meee The system of conics has two solutions x42y129 x429y12811 What are the solutions to this system of conics class=

Respuesta :

Answer:

  • (1, -1) and (7, -1)

===============

Given system

  • (x − 4)² + (y + 1)² = 9
  • (x − 4)² / 9 + (y + 1)² / 81 = 1

Solve it by elimination

Multiply the second equation by 9 and subtract from the first one:

  • (y + 1)² -  (y + 1)² / 9 = 0
  • (y + 1)²/8 = 0
  • (y + 1)² = 0
  • y + 1 = 0
  • y = - 1

Substitute y and solve for x

  • (x − 4)² + (-1 + 1)² = 9
  • (x - 4)² = 9
  • x -4 = ± 3
  • x = 4 ± 3
  • x = 1 and x = 7

Answer:

[tex]\left(\; \boxed{1}\:,\boxed{-1}\;\right)\; \textsf{and}\;\left(\; \boxed{7}\:,\boxed{-1}\;\right)[/tex]

Step-by-step explanation:

Given system of conics:

[tex]\begin{cases}(x-4)^2+(y+1)^2=9\\\\\dfrac{(x-4)^2}{9}+\dfrac{(y+1)^2}{81}=1\end{aligned}[/tex]

Multiply the second equation by 81:

[tex]\implies \dfrac{81(x-4)^2}{9}+\dfrac{81(y+1)^2}{81}=81[/tex]

[tex]\implies 9(x-4)^2+(y+1)^2=81[/tex]

Rearrange to make (y + 1)² the subject:

[tex]\implies (y+1)^2=81-9(x-4)^2[/tex]

Substitute into the first equation and simplify:

[tex]\implies (x-4)^2+81-9(x-4)^2=9[/tex]

[tex]\implies -8(x-4)^2=-72[/tex]

[tex]\implies (x-4)^2=9[/tex]

Solve for x:

[tex]\implies \sqrt{ (x-4)^2}=\sqrt{9}[/tex]

[tex]\implies x-4=\pm3[/tex]

[tex]\implies x=4\pm3[/tex]

[tex]\implies x=1, 7[/tex]

Substitute the found values of x into the first equation and solve for y:

[tex]\begin{aligned}x=1 \implies (1-4)^2+(y+1)^2&=9\\(-3)^2+(y+1)^2&=9\\9+(y+1)^2&=9\\(y+1)^2&=0\\y+1&=0\\y&=-1\end{aligned}[/tex]

[tex]\begin{aligned}x=7 \implies (7-4)^2+(y+1)^2&=9\\(3)^2+(y+1)^2&=9\\9+(y+1)^2&=9\\(y+1)^2&=0\\y+1&=0\\y&=-1\end{aligned}[/tex]

Therefore, the solution to the given system of conics is:

  • (1, -1) and (7, -1)
ACCESS MORE