Answer:
[tex]\textsf{A.} \quad g(x)=\sqrt{4x}-2[/tex]
Step-by-step explanation:
Transformations
For a > 0
[tex]f(x)+a \implies f(x) \: \textsf{translated $a$ units up}[/tex]
[tex]f(x)-a \implies f(x) \: \textsf{translated $a$ units down}[/tex]
[tex]a\:f(x) \implies f(x) \: \textsf{stretched parallel to the $y$-axis (vertically) by a factor of $a$}[/tex]
[tex]f(ax) \implies f(x) \: \textsf{stretched parallel to the $x$-axis (horizontally) by a factor of $\dfrac{1}{a}$}[/tex]
Given parent function:
[tex]f(x) = \sqrt{x}[/tex]
1. Horizontal stretch by a factor of 4:
f(4x) is a horizontal stretch by a factor of 1/4.
So f(1/4x) is a horizontal stretch by a factor of 4.
[tex]f\left(\frac{1}{4}x\right)\implies g(x)=\sqrt{\frac{1}{4}x}[/tex]
2. Vertical shift by 2 units down:
[tex]f\left(\frac{1}{4}x\right)-2\implies g(x)=\sqrt{\frac{1}{4}x}-2[/tex]