B (−5, 3) B″ ?
C (−1, 3) C″ ?
D (−1, 1) D″ ?


Complete the table to show the locations of A″, B″, C″, and D″ after both transformations.

A) A″ (−2, −3), B″ (0, −3), C″ (0, 1), D″ (−2, 1)

B) A″ (−3, −2), B″ (−3, 0), C″ (1, 0), D″ (1, −2)

C) A″ (3, 0), B″ (3, 2), C″ (−1, 2), D″ (−1, 0)

D) A″ (3, 2), B″ (3, 0), C″ (−1, 0), D″ (−1, 2)

B 5 3 B C 1 3 C D 1 1 D Complete the table to show the locations of A B C and D after both transformations A A 2 3 B 0 3 C 0 1 D 2 1 B A 3 2 B 3 0 C 1 0 D 1 2 C class=

Respuesta :

Answer:

  D) A″ (3, 2), B″ (3, 0), C″ (−1, 0), D″ (−1, 2)

Step-by-step explanation:

You want the coordinates of points A", B", C", D" after A(-5, 1), B(-5, 3), C(-1, 3), and D(-1, 1) have been translated by <2, -3> and reflected across the origin.

Translation

The translation transformation is given in the problem statement:

  (x, y) ⇒ (x +2, y -3)

Reflection

The reflection transformation is ...

  (x, y) ⇒ (-x, -y) . . . . . . . reflection across the origin

Composition

The composition of these transformations is ...

  (x, y) ⇒ (-(x +2), -(y -3))

  (x, y) ⇒ (-x-2, -y+3)

Application

Using this transformation on the given points, we find ...

  A(-5, 1) ⇒ A"(-(-5)-2, -1+3) = A"(3, 2)

  B(-5, 3) ⇒ B"(-(-5)-2, -3+3) = B"(3, 0)

  C(-1, 3) ⇒ C"(-(-1)-2, -3+3) = C"(-1, 0)

  D(-1, 1) ⇒ D"(-(-1)-2, -1+3) = D"(-1, 2)

ACCESS MORE