NO LINKS!! Use the method of substitution to solve the system. (If there's no solution, enter no solution). Part 10z
![NO LINKS Use the method of substitution to solve the system If theres no solution enter no solution Part 10z class=](https://us-static.z-dn.net/files/d5e/98355fea3421ee5f0c379b44a4eba6b7.jpg)
Answer:
=====================
Answer:
[tex](x,y)=\left(\; \boxed{-2,13} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]
[tex](x,y)=\left(\; \boxed{1,10} \; \right)\quad \textsf{(larger $x$-value)}[/tex]
Step-by-step explanation:
Given system of equations:
[tex]\begin{cases}\phantom{bbbb}y=x^2+9\\x+y=11\end{cases}[/tex]
To solve by the method of substitution, rearrange the second equation to make y the subject:
[tex]\implies y=11-x[/tex]
Substitute the found expression for y into the first equation and rearrange so that the equation equals zero:
[tex]\begin{aligned}y=11-x \implies 11-x&=x^2+9\\x^2+9&=11-x\\x^2+9+x&=11\\x^2+x-2&=0\end{aligned}[/tex]
Factor the quadratic:
[tex]\begin{aligned}x^2+x-2&=0\\x^2+2x-x-2&=0\\x(x+2)-1(x+2)&=0\\(x-1)(x+2)&=0\end{aligned}[/tex]
Apply the zero-product property and solve for x:
[tex]\implies x-1=0 \implies x=1[/tex]
[tex]\implies x+2=0 \implies x=-2[/tex]
Substitute the found values of x into the second equation and solve for y:
[tex]\begin{aligned}x=1 \implies 1+y&=11\\y&=11-1\\y&=10\end{aligned}[/tex]
[tex]\begin{aligned}x=-2 \implies -2+y&=11\\y&=11+2\\y&=13\end{aligned}[/tex]
Therefore, the solutions are:
[tex](x,y)=\left(\; \boxed{-2,13} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]
[tex](x,y)=\left(\; \boxed{1,10} \; \right)\quad \textsf{(larger $x$-value)}[/tex]